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Abstract The rearrangements for 2-phospha-4-silabicy-
clo[1.1.0]butane, analogous to the valence isomerization
of the hydrocarbons bicyclobutane, 1,3-butadiene, and
cyclobutene, were studied at the (U)QCISD(T)/6-
311+G**//(U)QCISD/6-31G* level of theory. The
monocyclic 1,2-dihydro-1,2-phosphasiletes are shown to
be the thermodynamically preferred product, in contrast
to the isomerization of the hydrocarbons, which favors
the 1,3-butadiene structure. Furthermore, an unprece-
dented direct isomerization pathway to the 1,2-dihydro-
1,2-phosphasiletes was identified. This pathway is com-
petitive with the isomerization via the open-chain but-
adienes and becomes favorable when electron-donating
substituents are present on silicon.

Keywords Heterobicyclobutanes Æ Valence
isomerization Æ Ab initio theory

Introduction

Bicyclo[1.1.0]butane with its strain energy of over
60 kcal mol�1 is a fascinating compound that has at-
tracted the interest of both experimental and theoretical
chemists [1]. It is now well established that bicy-
clo[1.1.0]butane (1) opens to the more stable valence iso-
mer gauche-butadiene (2) by a pericyclic rearrangement,

which is characterized by a concerted, asynchronous
conrotatory ring opening where the central C–C bond
remains intact [2, 3]. This is an allowed [r2s+r2a] con-
rotatory rearrangement according to the Woodward–
Hoffmann (W–H) orbital-symmetry rules [4–6], affording
kinetic intermediate 2 that can easily rotate to s-trans-1,3-
butadiene (3). The activation barrier of 41.5 kcal mol�1

calculated at the multiconfiguration self-consistent field
level of theory [2] agrees closely with the experimental
value of 40.6 kcal mol�1 [7, 8]. The disrotatory, W–H
forbidden, thermal ring opening of 1 is less favorable, and
was calculated to be about 15 kcal mol�1 higher in energy
[2]. Another rearrangement is also feasible; stretching of
the central C–C bond leads to a planar singlet diradical
transition structure for inversion, which is also a higher
energy process with a barrier of 47.4 kcal mol�1 [9].

1 2 3 4

Valence isomer cyclobutene (4) is of intermediate
stability between 1 and 3 and converts thermally to
gauche-butadiene 2 by an electrocyclic ring opening [10,
11]. This pericyclic rearrangement follows a W–H
allowed concerted, conrotatory pathway. The calculated
activation barrier at the MP2/6-311G** level of the-
ory of 33.7 kcal mol�1 [12–14] for this process is
in agreement with the experimental value of
32.9±0.5 kcal mol�1 [10, 11]. Usually for the ring
opening of cyclobutenes, steric effects dominate the
preference for inward versus outward rotation [15].
However, electronic effects can also dictate this rear-
rangement, as was reported very recently for the steri-
cally hindered substrate 5, which prefers to react via the
more crowded inward rotatory pathway, leading mainly
to butadiene 6 (Scheme 1) [16, 17].
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Bicyclo[1.1.0]butanes with main-group hetero-ele-
ments in the ring have also received considerable
attention [18]. However, little is known about the
phosphorus-containing analogues [19–22]. In our ongo-
ing research on small strained organophosphorus ring
systems, we became interested in the yet unknown 2-
phospha-4-silabicyclo[1.1.0]butanes, whose occurrence
we reported as a reactive intermediate recently [23, 24].
Valence isomerization of the 2-phospha-4-silabicy-
clo[1.1.0]butane 9 to the 1,2-dihydro-1,2-phosphasiletes
10a,b was indicated by reacting 1H-phosphirene 8

with silylene Si[(NCH2
tBu)2C6H4-1,2] [ ” Si(NN)]

(Scheme 2).

SCS-MP2/6-311+G** calculations on B3LYP/
6-31G* model structures show that the intermediate
2-phospha-4-silabicyclo[1.1.0]butane isomerizes directly,
via an unprecedented W–H allowed [r2s+r2a] pro-
cess, to the thermodynamically preferred 1,2-dihydro-
1,2-phosphasilete [23, 24]. This pathway is favored
over the concerted, asynchronous conrotatory ring
opening leading to s-trans-1-phospha-4-sila-1,3-butadi-
ene [25].

Here, we report on the isomerization of 2-phospha-4-
silabicyclo[1.1.0]butane A to its valence isomers
1-phospha-4-sila-1,3-butadiene B and 1,2-dihydro-1,2-
phosphasilete C (only one other synthesis of 1,2-dihy-
dro-1,2-phosphasiletes was reported: [26–28]), using
high-level ab initio calculations at the (U)QCISD(T)/6-
311+G**//(U)QCISD/6-31G* level of theory. We will
compare the differences between a direct A fi C path-
way versus the isomerization via butadiene B. In addi-
tion, the influence of substituents on silicon on the
rearrangements will also be discussed.

Computational details

All calculations were performed using the GAUSSIAN
98 [29] suite of programs. Geometries were optimized
using the standard 6-31G* basis set at the (U)MP2 and
(U)QCISD [30, 31] level of theory, while single-point
calculations were preformed at the (U)QCISD(T)/
6-311+G** level using the (U)QCISD/6-31G* geome-
tries. First and second order energy derivatives were
computed to confirm that minima or transition struc-
tures had been located at the (U)MP2/6-31G* level.
Intrinsic reaction coordinate driving calculations were
performed at the (U)MP2/6-31G* level to establish the
connections between transition structures and minima.
The total energies calculated at the (U)MP2, (U)QCISD,
and (U)QCISD(T) levels were corrected for the
(U)MP2/6-31G* level zero-point energies scaled by a
factor of 0.967 [32].

Results and discussion

First, we investigated the rearrangements of bicy-
clo[1.1.0]butane (1) and cyclobutene (4) into the more
stable s-trans-1,3-butadiene (3) at the (U)QCISD(T)/
6-311+G**//(U)QCISD/6-31G* level of theory (this
method gives similar energies when compared to the
CASSCF(10,10)/6-31G* level of theory as was reported
for the isomerization of 2-oxabicyclo[1.1.0]butane: [33]),
since no complete study of the valence isomerizations of
all C4H6 isomers at the same level of theory were
reported to date. Subsequently, we investigated the
rearrangements of the 2-phospha-4-silabicyclo[1.1.0]bu-
tanes, where the effects of heteroatom substitution on the
characteristics of the rearrangements become apparent.

Bicyclo[1.1.0]butane (1) leads to gauche-butadiene 2

via a concerted, asynchronous conrotatory ring opening
[2, 3], which has a barrier of 39.2 kcal mol�1, and is
exothermic by 26.0 kcal mol�1 (Fig. 1). This closed-shell
rearrangement is favored over the corresponding
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diradical open-shell pathway (DE�=43.2 kcal mol�1,
<S2>=0.85). In addition, cyclobutene (4) also gives 2
via a synchronous (Cs symmetry) conrotatory ring
opening [12–14] that requires 32.8 kcal mol�1, and is
exothermic by 9.9 kcal mol�1. Both calculated reaction
barriers are in excellent agreement with the experimental
values of 40.6 kcal mol�1 [7, 8] and 32.9 kcal mol�1 [10,
11], respectively.

The kinetic gauche-butadiene 2 can easily transform
into its enantiomer 2¢ via the planar s-cis-1,3-butadiene
(TS2-2¢) [2, 34] with a barrier of only 0.7 kcal mol�1, or
can rotate to the more stable trans-butadiene 3

(DE�=2.5 kcal mol�1) with an exothermicity of
2.6 kcal mol�1 (Fig. 2) [12–14]. The geometrical
parameters of the optimized structures 1, 3, and 4 at the
QCISD/6-31G* level of theory are in excellent agree-
ment with the experimental estimates (experimental
structures—1, 3, and 4: [35–37]).

Incorporating heteroatoms into the bicy-
clo[1.1.0]butane framework has a profound impact. We
found that 2-phospha-4-silabicyclo[1.1.0]butane (11)
opens with a modest exothermicity (0.4 kcal mol�1) di-
rectly to valence isomer s-1-phospha-4-sila-1,3-butadiene
(12) in its trans configuration via a concerted, asynchro-
nous conrotatory ring opening. In this process, the P–C2
bond becomes elongated well before that of the Si–C1
bond (Fig. 3). The activation barrier of 38.8 kcal mol�1 is
very similar to the calculated activation barrier of

39.2 kcal mol�1 for the [r2s+r2a] process in bicyclo
[1.1.0]butane (1). The closed-shell rearrangement 11 fi 12

is favored over the corresponding diradical open-shell
pathway (DE�= 41.3 kcal mol�1, <S2>=0.97).

s-Trans-butadiene 12 can transform into the slightly
less stable gauche-butadiene 13 (DE=2.6 kcal mol�1)
with an energy barrier of 7.5 kcal mol�1. Subsequently,
butadiene 13 can isomerize via a conrotatory electrocy-
clic ring closure to the much more stable 1,2-dihydro-
1,2-phosphasilete (14) (DE=�23.9 kcal mol�1), with a
rearrangement barrier of only 3.2 kcal mol�1. Clearly, if
a 1-phospha-4-sila-butadiene is to be formed from 11, it
will rearrange to the four-membered ring structure 14.
We conclude that in contrast to the hydrocarbons, where
butadiene 3 is the favored product, the P,Si-derivatives
12 and 13 are not likely candidates to be observed on
rearranging bicyclic compound 11.

As 14 is thermodynamically the preferred valence
isomer, we also explored whether it could be formed
directly from bicyclic 11. Indeed, forcing an asynchro-
nous conrotatory ring opening with an initial SiH2-
group rotation resulted in a transition structure TS11–
14 for the direct rearrangement of 11 into 14 (Fig. 4).
The barrier of 39.0 kcal mol�1 for this closed-shell
process is similar to the conversion via the P,Si-butadi-
enes (DE�=38.8 kcal mol�1, Fig. 3)1. The rearrange-
ment via TS11–14 obeys the orbital symmetry rules and
can be described as a [r2s+r2a] process. Such a path-
way is unprecedented for the isomerization of the carbon
analogue bicyclo[1.1.0]butane (1) [2], for which s-trans-
1,3-butadiene is the favored product.

Due to the similarities in activation energy for the
conversions 11 fi 12 and 11 fi 14 at the QCISD(T)/
6-311+G**//QCISD/6-31G* level of theory, we have
also incorporated in our computational model the cyclic
diamine HN-C=C-NH as substituent on silicon to
investigate the effect of donating N atoms, which are
also present in our experimental system [23, 24] on the
rearrangements.
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1No competitive open-shell rearrangement is present for TS11–14.
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Substituted 2-phospha-4-silabicyclo[1.1.0]butane 15

leads to its valence isomer s-trans-1-phospha-4-sila-
1,3-butadiene 16 via a concerted, asynchronous conro-
tatory ring opening (DE�=39.0 kcal mol�1), with a
modest endothermicity of 1.5 kcal mol�1 (Fig. 5). The
associated transition structure TS15–16 shows features
similar to the parent analogue TS11–12, and the closed-
shell rearrangement 15 fi 16 is favored over the
corresponding diradical open-shell pathway (DE�=
46.1 kcal mol�1, <S2>=0.97)2. In addition, s-trans-
butadiene 16 can transform into the slightly more stable
planar cis-butadiene 17 (DE=�1.5 kcal mol�1), which
is now an energy minimum, with an energy barrier of
only 8.2 kcal mol�1.

Subsequently, 17 can isomerize via a conrotatory
electrocyclic ring closure to the much more stable 1,2-
dihydro-1,2-phosphasilete 18 (DE=�25.6 kcal mol�1)
with a minute barrier of only 1.3 kcal mol�1. The geo-
metrical parameters of the optimized 18 are in good
agreement with the single-crystal X-ray analysis of 10a
[23, 24].

Interestingly, the direct valence isomerization now be-
comes favorable, and 2-phospha-4-silabicyclo[1.1.0]
butane 15 gives cyclobutene derivative 18 (DE�=
27.7 kcal mol�1) via a W–H allowed [r2s+r2a] process,
with an exothermicity of 25.6 kcal mol�1 (Fig. 6).

The lower barrier for the direct conversion 15 fi 18

compared to that of the parent 11 fi 14 can be ascribed
to the presence of the donating amino groups on silicon.
Generally, p-donor (e.g., NH2) and r-acceptor (e.g., F)
substituents destabilize three-membered rings, making
them more reactive, as indicated by their increased ring
strain [38, 39]. This is also evident for the 15 fi 18

conversion by an increased exothermicity (DE11 fi 14=
21.7 kcal mol�1; DE15 fi 18=25.6 kcal mol�1). Addition-
ally, the analogous rearrangement for the fluoro-substi-
tuted 2-phospha-4-silabicyclo[1.1.0]butane 19 confirms
this trend (DE19 fi 20=28.1 kcal mol�1, Fig. 7). Further-
more, the associated transition state of this novel path-
way is stabilized by the electron-donating N-heterocyclic
substituent on silicon (DE�

11 fi 14=39.0 kcal mol�1;
DE�

15fi18=27.7 kcal mol�1; DE�
19fi20=35.0 kcal mol�1).

Conclusions

Hetero substitution changes the stability of the valence
isomers of bicyclo[1.1.0]butane (1). 2-Phospha-4-silabi-
cyclo[1.1.0]butane (11) is the least stable isomer and 1,2-
dihydro-1,2-phosphasilete (14) the most stable one at the
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QCISD(T)/6-311+G**//QCISD/6-31G* level of theory
[40]. Two reaction pathways for the thermal isomeriza-
tion of 2-phospha-4-silabicyclo[1.1.0]butane (11) have
been found: (a) a three-step process starting with a
barrier of 38.8 kcal mol�1 for the concerted, asynchro-
nous conrotatory ring opening of 11 to s-trans-1-
phospha-4-sila-1,3-butadiene (12), followed by a con-
formational change to the gauche isomer 13 and a
subsequent conrotatory electrocyclic ring closure to 14,
and (b) a direct transformation of 11 into 14 via a
[r2s+r2a] process with a barrier of 39.0 kcal mol�1

which becomes favorable when electron-donating sub-
stituents are present on silicon. This latter path is
unprecedented for the analogous isomerization of bicy-
clo[1.1.0]butane.

Cartesian coordinates and energies of all stationary
points are available in the electronic supplementary
material.
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